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We have developed an approach based on the characteristic determinant �the Green function poles� to solve
the Dyson equation in quasi-one-dimensional �Q1D� and two-dimensional disordered systems without any
restriction on the numbers of impurities and modes. We consider two different models for a disordered Q1D
wire: a set of two-dimensional � potentials with signs and strengths determined randomly, and a tight-binding
Hamiltonian with several modes and on-site disorder. We calculate analytically the scattering matrix elements
for particles coming both from the left and from the right without actually determining the eigenfunctions of
the electrons. It is shown that the poles of the Green functions for these models can be deduced from a
determinant of rank N�N �N is the number of scatterers� instead of the rank NM �NM �M is the number of
modes�. We calculate the inverse localization lengths for the two models. They are exactly on the order of w2

for the weak disorder regime and are valid for an arbitrary number of channels, M.
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The quantum transport of electrons in quasi-one-
dimensional �Q1D� and two-dimensional �2D� disordered
systems has been studied extensively over the past decades
both theoretically and experimentally.1–7 In particular, re-
search interest was connected with the fact that electron
transmission caused by elastic scattering with impurities in
such size-quantized systems changes the shape of the con-
ductance quantization due to the presence of evanescent
modes. In most of the theoretical work where quantum-
interference effects are important, the Anderson tight-binding
model �see, e.g., Refs. 5, 8, and 9� has been used. A different
model of the 2D disordered system, where the motion of
electrons is modeled as regions of free propagation with oc-
casional elastic scattering by a random array of scatterers
was discussed in Ref. 1, based on the technique of combin-
ing scattering matrices. Another approach was proposed in
Ref. 2: current transmission amplitudes in a Q1D wire with a
single � potential impurity were obtained by taking into ac-
count both propagating and evanescent modes based on a
single-electron Green function �GF� method. However, to
our knowledge, the methods available at present to obtain
analytical results for the density of states, conductance, etc,
in multichannel systems permit us to study only a limited
number of defects, because in more complex cases, i.e.,
when the number of defects increases, such methods are
much too tedious.

In this Brief Report we develop, closely following Refs.
10–12, an approach based on the characteristic determinant
or the poles of the GF to solve the Dyson equation in Q1D
and 2D disordered systems without any restriction on the
numbers of impurities and modes. The characteristic deter-
minant is built up from the reflection amplitude of the indi-
vidual scatterer and the phase accumulated during multiple
reflections. We consider two different models for the disor-
dered system: a set of two-dimensional N scatterers of �
potentials with arbitrary signs and strengths placed randomly
in the �x ,y� plane,

V�x,y� = �
l=1

N

Vl��x − xl���y − yl� , �1�

and a tight-binding Hamiltonian with several modes M and
on-site disorder, described by the standard Hamiltonian with
nearest-neighbor interaction

H = �
i

�i�ri��ri� + t�
i,j

�ri��rj� , �2�

where �i is the energy of the site i chosen randomly in the
range �− w

2 , w
2 � with uniform probability, and t is the hopping

matrix element. The double sum runs over nearest neighbors.
We calculate the transmission and reflection amplitudes

for particles coming both from the left and from the right
without actually determining the eigenfunctions of the elec-
trons. We show that the Q1D problem can be mapped onto
the 1D problem and that the poles of the Green function
matrix elements give a determinant of rank N�N, where N
is the number of scatterers. The elements of reflection and
transmission amplitudes, calculated on the base of the GF,
may be presented in the form of a ratio of two determinants
where both the numerator and the denominator are polyno-
mials of the Nth degree. We have calculated the localization
length of an electron in Q1D and 2D systems in the weak
disorder regime for both models and for an arbitrary number
of modes M.

The multichannel scattering problem is generally treated
by solving the Schrödinger equation in configuration space
with appropriate boundary conditions. In the case of a Q1D
wire, where the electron is confined in the y direction but is
free to propagate in the x direction, we choose an infinite-
square-well confining potential in the y direction. We can
similarly treat the case of a 2D disordered system by setting
the other choice of confinement potential, where electrons
can also propagate in the y direction. Thus, two systems will
be discussed within the framework of the same approach. We
assume the existence of a confining potential in the y direc-
tion leading to a set of transverse modes. For definiteness we
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choose for Vc�y� the model of an infinite square well where
Vc�y� is zero for 0�y�W �W is the width of the system in
the y direction� and infinite elsewhere, because none of the
main results of the paper depend fundamentally on the con-
finement potential Vc�y�. Then the orthonormalized eigen-
function, satisfying a one-dimensional Schrödinger equation
with a square-well potential, is �2m0=�=1� �n�yl�
=� 2

Wsin knyl with kn=�EF− � n�
W �2, where EF is the Fermi en-

ergy and n is the subband index.
The Dyson equation for a Q1D wire can be written in the

form �see, e.g., Refs. 2 and 13�

Gnm
�N��x,x�� = Gn

�0��x,x���nm

+ �
k,q
� Gn

�0��x,x���nkVkq�x��Gqm
�N��x�,x��dx�.

This equation is a set of infinitely coupled algebraic equa-
tions but in actual calculations we truncate the infinite set of
coupled channels to a finite value M, including effects from
both the open and closed modes. The upper index �l� of
Gnm

�l� �x ;x�� indicates the number of � potentials considered in
the calculation of a given GF. The matrix elements Vnm�x�
=	�n

��y�V�x ,y��m�y�dy of the defect potential �1�, after per-
forming the integration over y, become

Vnm�x� = �
l=1

N

Vnm
�l� ��x − xl� , �3�

with Vnm
�l� =

2Vl

W sin�
n�yl

W �sin�
m�yl

W � the coupling constant.
Gn

�0��x ,x��=−i exp�ikn�x−x��� /2kn is the GF of a propagating
mode in the absence of the defect potential V�x ,y�. If the
mode n is an evanescent mode, then one must take an ana-
lytical continuation of kn= i	n.

We assume that a plane wave is incident from the left onto
the system. To calculate the whole GF of the Dyson equation
and take into account multiple reflections consistently and
exactly without use of perturbation theory, we first isolate in
the matrix elements of the defect potential Vnm�x� the term
corresponding to the first potential at xN:

Vnm�x� = Vnm
�N���x − xN� + �

l=1

N−1

Vnm
�l� ��x − xl� , �4�

and evaluate the GF for a single �. The case of two � poten-
tials, when we separate the next �N−1�th potential from the
second term in the expression �4�, is solved using the GF for
a single �. Therefore we solve the problem iteratively with N
� potentials, considering the solution with �N−1� �’s to be
known. Thus we obtain the GF elements in an arbitrary in-
terval 
xn ,xn+1� �n=1, . . . ,N−1� of the disordered system.
Here we write out only the explicit form of the GF for
x ,x��x1,

Gnm
�N��x,x�� = Gn

�0��x,x���nm + RnmL
�N� Gn

0�x,x1�Gm
0 �x1,x��

�Gn
0�x1,x1�Gm

0 �x1,x1�
,

�5�

where RnmL
�N� are the matrix elements of reflection from the

whole system with N � potentials and may be written as the
ratio of two determinants

RnmL
�N� =

�
0 rnm

�1�
¯ rnm

�N�eikn�xN−x1�

1 ¯ ¯ ¯

] ] �Dn,l�N,M,m

eikm�xN−x1�
]

�
det�Dn,l�N,M,1

. �6�

rnm
�l� is the complex amplitude of the reflection of an electron

from the isolated potential Vl in the absence of the remaining
�N−1� potentials,2

rnm
�l� =

Vnm
�l� �Gn

�0��xl,xl�Gm
�0��xl,xl�

1 − �
p

M

Vpp
�l�Gp

�0��xl,xl�

. �7�

The numerator of RnmL
�N� is obtained from the most significant

quantity det�Dn,l�N,M,m, which is the pole of the GF 
see Eq.
�9��, by augmenting it on the left and on the top. This deter-
minant in the case of N arbitrary � potentials and M channels
can be written as the determinant of the partitioned matrix
NM �NM in the form

DN,M = det�− I�nl + 

nl�
r�l���1 − �nl�� , �8�

where I is the unit matrix of rank M �M. 
r�l�� is
the lth scattering matrix �rnm

�l� � of rank M �M and is
entirely determined by M�M +1� /2 parameters,
because det
r�l��=0. This can be checked by directly
making use of the identity rmm

�l� rnn
�l� −rmn

�l� rnm
�l� =0. 

nl�

=diag�eik1�xn−xl� ,eik2�xn−xl� , . . . ,eikM�xn−xl�� is the square M �M
matrix, which characterizes the phase shift of an electron that
propagates freely between the nth and lth � potentials, and it
has nonvanishing elements only on the diagonal.

By a sequence of elementary row and column
transformations, we can readily reduce the order of the
determinant NM �NM, Eq. �8�, and obtain the desired
N�N determinant with the following matrix elements,
which now contain information about the number of modes
M �1�n , l�N ; 1�m�M�:

�Dn,l�N,M,m = − �nl + �1 − �nl��
p=1

M
r1p

�n�rpm
�l� 
nl

�p�

r1m
�n� . �9�

The quasibound states of an electron in the disordered Q1D
or in a 2D system can be found from the condition
det�Dn,l�N,M,1=0. Note that Eq. �9� reduces to the character-
istic determinant of a purely 1D system �see Refs. 11, 12,
and 14� if there is no coupling to the second, third, etc.,
mode, i.e., rp1

�p�=r1p
�p�=0.

Inserting the appropriate GF matrix elements, Eq. �5�,
x=1 and x�=xN, one can calculate the transmission ampli-
tude TnmL

�N� of an electron through the system with N � poten-
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tials. Similarly to RnmL
�N� , we can write the explicit form of

TnmL
�N� as a ratio of two determinants,

TnmL
�N� =

�
�nm rnm

�1�
¯ rnm

�N�eikn�xN−x1�

1 ¯ ¯ ¯

] ] �Dn,l�N,M,m

e−ikm�xN−x1�
]

�
det�Dn,l�N,M,1

, �10�

where the numerator of TnmR
�N� is obtained from the same de-

terminant �9� by augmenting it on the left and on the top.
Note that by employing Eqs. �6� and �10� it is straightfor-

ward to check by mathematical induction that, for scattering
matrix elements, current conservation takes place:

�
m=1

M

�TnmL
�N� TnmL

�N��

+ RnmL
�N� RnmL

�N��

� = 1, �11�

where the summation is carried out over only the propagat-
ing modes of the wire.

Proceeding along the same lines as before, we can simi-
larly derive the expressions for the reflection and transmis-
sion amplitudes for the electrons incident from the right. The
only difference now is that we isolate in Eq. �3� the term
corresponding to the points on the left-hand edge, x1, x2, etc.
The structures of the expressions of the scattering matrix
elements from the right will be very similar to Eqs. �6� and
�10�. The essential difference is that the numerators of RnmR

�N�

and TnmR
�N� now are obtained from the same determinant �9� by

augmenting it on the right and on the bottom. The expres-
sion, e.g., for TnmR

�N� reads

TnmR
�N� =

�
�Dn,l�N,M,m ] e−ikm�xN−x1�

] ]

¯ ¯ ¯ 1

rnm
�1�eikm�xN−x1�

¯ rnm
�N� �nm

�
det�Dn,l�N,M,1

. �12�

Our task is now to calculate the electron localization length
in a multichannel disordered system for the weak disordered
case using the explicit form of TnmL

�N� , �10�. The localization
length � is obtained from the decay of the average of the
logarithm of the conductance, ln g, as a function of the lat-
eral system size L,

�−1 = − lim
L→�

1

2L
�ln g� , �13�

where g is given by the Landauer two-probe formula15,16 and
�¯� denotes averaging over the disorder Vl in the interval
�−w /2,w /2� with given probability:

g =
2e2

h
�
n,m

Tnm
�N�Tnm

�N��

. �14�

In the expressions for TnmL
�N� in the limit of weak disorder we

are going to keep only the terms that are in the linear order of
the strength Vl of the � potentials. In this regime we have the
following approximate expressions for the main quantities:

Tmm
�N� 
 eikm�xN−x1��

l=1

N

�1 + rmm
�l� �


 eikm�xN−x1�

1 + i�
l=1

N

Vl�Al −
sin2�m�yl/W�

kmW �

1 + i�
l=1

N

VlAl

�15�

and

Tnm
�N� = eikm�xN−x1��

l=1

N

rnm
�l� ei
mn

�l�


 −

ieikm�xN−x1��
l=1

N

Vl
sin�n�yl/W�sin�m�yl/W�

W�knkm
ei
mn

�l�

�1 + i�
l=1

N

VlAl� �16�

with Al=�n=1
M sin2�n�yl /W� /Wkn.

The explicit form of the phase 
mn is irrelevant for further
calculation and we are not going to write it down. By ex-
panding �13� to lowest order in the amplitudes of the � po-
tentials using Eqs. �14�–�16� and, after averaging over the
realization, we obtain the inverse localization length for the
weak disordered case,

1

�M
=

�

2NMW2�
l=1

N ��
m=1

M
sin2�m�yl/W�

km
�2

. �17�

Here �= �Vl
2�= 1

w	−w/2
w/2 f�Vl�Vl

2dVl with the distribution func-
tion f�Vl� an arbitrary even function of Vl. In particular, for a
uniform distribution, i.e., f�vl�=1, this yields �=w2 /12.

The above expression �M
−1 is exact to order w2 for the

weak disorder regime. It is valid also for an arbitrary number
of channels M and for two different models for disordered
Q1D and 2D systems. To verify the validity of the expression
�M

−1 for the case of the tight-binding model let us discuss the
case of few-channel wires for which the localization length
was calculated in Ref. 5, using the tight-binding Anderson
model. Indeed, for M =1 Eq. �17� yields

1

�1
=

�

2Nk1
2W2�

l=1

N

sin4��yl

W
� , �18�

which can be related to the standard expression for the local-
ization length in a 1D chain tight-binding model with diag-
onal disorder of �i if the �i are independent Gaussian random
variables with zero mean values and with correlation func-
tion ��in� jm�=��i,j�m,n. To this end, in Eq. �18� we take
W=2 �for a tight-binding model the number of modes coin-
cides with the number of sites in the transverse direction
with spacing a=1� and yl=1 and replace k1→sin k1. After
summation over N, Eq. �18� reduces exactly to the well-
known formula �1

TB=8 sin2 k1 /� �see, e.g., Ref. 16� with dis-
persion relation E=2 cos k1. At k1→0 we get �1

TB=8k1
2 /�,

which is the well-known localization length for the white
noise model. Reasoning along the same line as in deriving
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�1
TB, we can show that 1 /�M

TB, in the case of M channels
and weak disorder, can be written in the compact form
�W→M +1�

1

�M
TB =

�

2M�M + 1�2 �
m=1

M ��
n=1

M
sin2� mn�

M+1�
sin kn

�2

=
�

16M�M + 1���
n=1

M
3 + �2n,M+1

sin2kn
+ 2 �

n�p

M
2 + �n+p,M+1

sin kn sin kp
� ,

�19�

where n� p and the wave vector kn must be found from the
dispersion relation E=2 cos kn+2t cos n� / �M +1� �see, e.g.,
Refs. 5, 17, and 18�. The general expression for 1 /�M

TB is
valid also for an M �M system and together with Eq. �17�
represents the central results of this Brief Report. It is readily
verified that for M =2,3 the above expression 1 /�M

TB reduces
to the analogous expressions for the two- and three-channel
wire localization lengths, obtained in Ref. 5 by S-matrix con-
struction from transfer matrices. For M�1, as one must
expect according to Ref. 19, �M

TB is proportional to M. Fi-
nally, in the absence of interchain hopping �t=0�, it reduces
to the localization length 1 /�1

TB for a 1D chain, if formally
we take all the kn to be equal and make a double summation
which is equal M�M +1�2 /4. Making use of Eqs. �14� and
�16� and averaging the dimensionless conductance g �in units
of 2e2 /h� over the disorder in the same regime, we obtain
�g�
M −2MN /�M

TB. The latter coincides with the asymptotic
expression of the average conductance obtained in Ref. 6 on
the basis of a numerical calculation. Using Eq. �19� and the
above expression for �g�, one can check directly that in the

weak disorder limit the well-known relation 2�ln g�=ln�g�
between the various localization lengths for a 1D system
�see, e.g., Refs. 20 and 21� holds also for multichannel sys-
tems, reflecting the fact that conductance is not a self-
averaging quantity. Finally, by averaging the inverse
localization length �17� over the realizations of random
yl using a uniform distribution and recalling that the
number of open modes M =Int�kFW /��, we get
��M

−1�
3kF
2� /16M3�2��n=1

M 1 /kn
2+ 2

3�n�m
M 1 /knkm�.

In summary, we have developed an approach based on the
characteristic determinant �poles of the GF� to solve the
Dyson equation in Q1D and 2D disordered systems without
any restriction on the numbers of impurities and modes. We
consider two different models for a disordered Q1D wire: a
set of two-dimensional � potentials with signs and strengths
determined randomly, and a tight-binding Hamiltonian with
several modes and on-site disorder. We analytically calcu-
lated the transmission and reflection amplitudes for particles
coming both from the left and from the right without actually
determining the eigenfunctions of the electron. Our results
for the inverse localization lengths, Eqs. �17� and �19�, are
exact to order w2 for the weak disorder regime and are valid
for an arbitrary number of channels, M.
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